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ABSTRACT
Video diffusion models have recently shown strong capability in
synthesizing high-fidelity videos in various ways, including predic-
tion, interpolation, and unconditional generation. However, their
synthesis ability credits a lot to leveraging large denoisingmodels to
reverse the long noise-adding process, which also brings extremely
expansive sampling and training costs. After examing the source of
the computation cost, we confirm that the main calculation comes
from the redundancy of the convolution. To address this issue, we
propose Efficiency-optimized Video Diffusion Models to reduce the
network’s computation cost by minimizing the input and output
channels of the convolution. First, a bottleneck residual path-
way is proposed to conduct a channel-wise downsample to the
convolution pathways, which extracts crucial information from the
input and reduces computation cost. Second, a three-path chan-
nel split strategy is proposed to reduce channel redundancy by
handling part of the input channels with more efficient pointwise
convolution and skip-connection pathways. Furthermore, a mixed
self-attention mechanism is proposed to optimize the computa-
tion cost of the self-attention in the network by adaptively choosing
the algorithm with lower time complexity according to the input
token lengths and hidden dimensions. Extensive experiments on
three downstream tasks show that our Efficiency-optimized Video
Diffusion Models can achieve an 10× speed-up while achieving
comparable or even better results in the performance of fidelity
compared with the state-of-the-art methods. The code is available
at https://github.com/PKU-ICST-MIPL/EVDM_ACMMM2023.
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1 INTRODUCTION
Today, the widespread of electronic devices has significantly ad-
vanced the development of news media technology. Different types
of videos can be readily accessed through various smart devices
such as laptops, smartphones, and so on. Therefore, there is a great
demand for generating high-quality videos but it is time-consuming
to generate videos manually. As a result, automatically generating
high-fidelity coherent videos has recently attracted more and more
attention. Some research works have demonstrated its promising
performance in promoting the development of short video and
movie industries.

Video Diffusion Models have recently shown promising results
in synthesizing high-fidelity videos. Based on the Denoising Dif-
fusion Possibility Models, they gradually add Gaussian noise to
the videos in the forward process, then use a denoising network to
predict the added noise in the reverse process to reconstruct the
videos. The forward process usually takes thousands of steps to
ensure the corrupted videos are approximately Gaussian noise. In
addition, to simplify the calculation, each added noise should be
small enough to make the posterior distribution approximate to
the Gaussian distribution. As a result, they need large networks to
predict the subtle added noise in each step. To acquire satisfactory
video samples, the reverse process also requires a lot of network
evaluations to reverse the long noise-adding process, which results
in the remarkable growth of computation cost. Therefore, the high-
fidelity results of the Video Diffusion Models owe much to trading
fidelity with speed, which leads to expansive sampling and training
costs.

Since the long inference time is an obstacle to the application of
diffusion models, existing works [13, 23, 26] consider using fewer
network evaluations to approximate the reverse denoising process.
However, such solutions do nothing to reduce the training time be-
cause the computation cost of the large denoising network remains
high, demanding vast amounts of computing resources to train dif-
fusion models. Moreover, as video data consume more calculations
in the network than 2D data like images, training a video diffusion
model is rather time-consuming compared with other diffusion
models like well-known text-to-image diffusion models.

https://github.com/PKU-ICST-MIPL/EVDM_ACMMM2023
https://doi.org/10.1145/3581783.3612406
https://doi.org/10.1145/3581783.3612406
https://doi.org/10.1145/3581783.3612406
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To reduce the computation cost of the video diffusion models,
we propose Efficiency-optimized Video Diffusion Models. To start
with, we choose to use 2D U-net networks for our optimization
since 3D convolution and self-attention operation take significantly
more time than the 2D version. We then examine the source of
the computation cost and confirm that the majority comes from
the convolution and self-attention layers. Moreover, we observe
that the convolution takes much more calculations than the self-
attention because of the channel redundancy. Therefore, we reduce
the network’s computation cost mainly by minimizing the input
and output channels of the convolution. As part of the computation
cost also comes from the self-attention layers, we further develop a
mixed self-attention algorithm to reduce their computation cost.

To reduce the channel redundancy of the convolution, we first
consider using computationally more efficient operations to replace
the original 3x3 convolution and handle part of the input chan-
nels. Therefore, we propose a three-path channel split strategy,
which adds pointwise convolution and direct input-output link
pathways to deal with part of the input channels. To further reduce
the computation cost, we use a bottleneck pointwise convolution to
downsample the channel of the input feature maps. However, the
temporal information can easily get lost in channel-wise downsam-
pling because the 2D architecture integrates the temporal axis into
the channel axis. To address this issue, we propose to enhance the
downsampled feature with temporal information, thus ensuring
both efficiency and fidelity.

For self-attention acceleration, previous methods [3, 14, 33]
mainly base their algorithm on the assumption that the token length
is bigger than the hidden dimension. This assumption holds in most
cases but fails in the denoising network of diffusion models be-
cause the size of the input token and its hidden dimension is not
fixed in different network layers. Therefore, we devise a mixed
self-attention mechanism, which uses a threshold gate to analyze
the token length and hidden dimension and adaptively chooses the
self-attention algorithm with a lower computation cost.

Our main contribution can be summarized as follows:

• A bottleneck residual pathway is proposed to downsam-
ple the channel of the features that flow through the network
by a bottleneck pointwise convolution. Noticing that the tem-
poral features lie in the channel axis in the 2D architecture,
we conduct a temporal enhancement to bring back the lost
temporal information in the channel-wise downsampling.

• A three-path channel split strategy is proposed to reduce
the channel redundancy of convolution via incorporating
pointwise convolution pathways and direct link pathways
to handle part of the input channels.

• A mixed self-attention mechanism is proposed to an-
alyze the input’s token length and hidden dimension and
adaptively choose the self-attention algorithm with a lower
computation cost.

To verify the effectiveness of our model, we conduct extensive
experiments on three downstream tasks: video prediction, video
interpolation, and video generation. Experimental results of these
three tasks on SM-MNIST, KTH, BAIR, and UCF datasets show that
our Efficiency-optimized Video Diffusion models can achieve a 10×
reduction of the computation cost while achieving comparable or

even better results in the performance of fidelity compared with
the state-of-the-art methods.

2 RELATEDWORK
Video Prediction and Generation. Early video Synthesis studies
mainly focus on the video prediction task [16, 32], which is, predict-
ing a sequence of future frames according to the past frames. Early
works [6, 20, 27] mainly adopted a combination of convolutional
and recurrent modules for passive video prediction. However, this
framework is limited by its partial observation of the past frames
[40], therefore is poor in predicting the long-term future. Later,
GAN-based methods have shown promising results on many tasks.
DMVP [18] was the first work to employ adversarial learning in the
network to improve the synthesis quality. After that, a lot of meth-
ods [22, 29, 34, 35] were proposed to further improve the generation
quality. In this period, the more challenging task, unconditional
video generation, began to be studied. StyleGAN-v [25] employs the
powerful StyleGAN2 architecture for video generation, realizing
high-resolution video generation. GAN-based methods can gen-
erate high-quality videos on single-domain videos. However, due
to the well-known mode-coverage [22, 22] shortage of the GAN,
these methods lack the ability to generate open-domain videos. In
addition, limited by inductive bias on the locality of convolutional
neural networks, the GAN-based methods struggle with complex
scenes with multiple objects.

Recently, Autoregression Transformer has emerged as a powerful
generative model, showing promising results in image generation.
Some works [11, 19, 37, 38] employ Autoregression models in the
video generation field. Among them, Latent Video Transformer
[19] proposed an architecture to model the video frames in the
latent space and predict latent representation for the next frames in
an autoregressive manner. Nuwa [38] and Cogvideo [11] focus on
open-domain text-to-video generation. Although thesemethods can
generate open-domain videos, they suffer from unidirectional bias
and accumulated prediction errors [8], which limits their sample
quality greatly.

Denoising Diffusion Probabilistic Models. Denoising Diffu-
sion Probabilistic Models were first proposed in [9]. [5] first applies
it to image generation and achieves great success. To further ap-
plies diffusion models to video generation, VDM [10] extends the
previous 2D architecture to 3D and employs the temporal attention
component to learn the temporal feature of the videos. Make-a-
video [24] further introduces temporal 1D convolution to capture
the temporal feature of the videos. It also proposes the frame inter-
polation network to generate high-fps videos. Phenaki [30] further
studies the challenging long video generation and realizes generat-
ing video with 2 minutes length.

Although video diffusion models can generate open-domain
high-fidelity videos, their success owes much to the trade between
quality and speed (section 1), which leads to expansive sampling
and training costs. In our work, we focus on reducing training time.

Acceleration for the Diffusion Model. DDIM [26] was the
first work to accelerate the diffusion model. Denoising Diffusion
Probabilistic Models require simulating a Markov chain for many
steps to produce a sample, in which every step requires a network
evaluation. To remedy this, DDIM generalizes DDPMs via a class
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of non-Markovian diffusion processes, which use fewer steps to
produce the sample. GGF [13] devises a Stochastic Differential Equa-
tion (SDE) solver with adaptive step sizes tailored to the diffusion
models, which can use 10x fewer steps than the DDPM. PD diffu-
sion [23] employs a progressive distillation mechanism to distill a
trained deterministic diffusion sampler, which realizes using half as
many sampling steps as the DDPM while maintaining the sample
quality.

The above methods achieve strong results in reducing sampling
costs by approximately using fewer steps to produce a sample. How-
ever, they can not reduce the computation cost of the network, thus
the training cost remains expensive. Our approach can accelerate
both the training and the sampling by reducing the computation
cost of the network.

3 EFFICIENCY-OPTIMIZED VIDEO DIFFUSION
MODELS

3.1 Video Diffusion Model
The video Diffusion Model is based on the Denoising Diffusion
Probabilistic Model(DDPM), which learns the distribution of the
data by gradually reconstructing the data. Specifically, the Denois-
ing Diffusion Probabilistic Model first conducts a forward process
that corrupts the data by gradually adding Gaussian noise to the
data in a Markov chain. Then, it learns a reverse process to restore
the structure of the data.

Let 𝑥0 be a sample from the distribution 𝑥0 ∼ 𝑞(𝑥0). The forward
process adds Gaussian noise to the 𝑥 from 𝑡 = 0 to 𝑡 = 𝑇 :

𝑞𝑡 (𝑥𝑡 | 𝑥𝑡−1) := N
(
𝑥𝑡 ;

√
1 − 𝛼𝑡𝑥𝑡−1, 𝛼𝑡 I

)
, (1)

where 𝑥𝑡 denotes the sample in the 𝑡 step. Moreover, the 𝑥𝑡 can be
directly derived by 𝑥0:

𝑞𝑡 (𝑥𝑡 | 𝑥0) := N
(
𝑥𝑡 ;

√
𝛼𝑡𝑥0, (1 − 𝛼𝑡 ) I

)
, (2)

where 𝛼𝑡 =
∏𝑡

𝑠=1 (1 − 𝛼𝑠 ).
Studies show that if the noise we added in the forward process

is small enough, then the posterior distribution 𝑞 (𝑥𝑡−1 | 𝑥𝑡 ) can
approximately be considered as a diagonal Gaussian distribution.
Therefore, we use a network 𝜃 to learn the mean 𝜇𝜃 (𝑥𝑡 ) and vari-
ance Σ𝜃 (𝑥𝑡 ) of the approximate distribution 𝑝𝜃 :

𝑝𝜃 (𝑥𝑡−1 | 𝑥𝑡 ) := N (𝜇𝜃 (𝑥𝑡 ) , Σ𝜃 (𝑥𝑡 )) (3)

However, it’s inefficient to use𝑞𝑡 (𝑥0:𝑇 ) to supervise the𝑝𝜃 (𝑥1:𝑇 | 𝑥0),
as each of 𝑥0:𝑇 need to be calculate. To address this issue, the diffu-
sion model uses 𝑞 (𝑥𝑡−1 | 𝑥𝑡 , 𝑥0) to conduct the reverse process:

𝑞 (𝑥𝑡−1 | 𝑥𝑡 , 𝑥0) := N
(
𝑥𝑡−1; �̃�𝑡 (𝑥𝑡 , 𝑥0) , 𝛽𝑡 I

)
, (4)

where �̃�𝑡 (𝑥𝑡 , 𝑥0) =
√
𝛼𝑡−1𝛼𝑡
1−𝛼𝑡 𝑥0 +

√
𝛼𝑡 (1−𝛼𝑡−1 )

1−𝛼𝑡 𝑥𝑡 , and 𝛽𝑡 = 1−𝛼𝑡−1
1−𝛼𝑡 𝛼𝑡 .

According to eq. 2, 𝑥0 can be estimated by 𝑥𝑡 :

𝑥0 =

(
x𝑡 −

√
1 − 𝛼𝑡𝜖

)
/
√
𝛼𝑡 , (5)

where 𝜖 ∼ N(0, I). As 𝑝𝜃 (𝑥0 | 𝑥𝑡 ) can be derived by eq.3, a 𝜖𝜃 (𝑥𝑡 | 𝑡)
can also be deducted using a neural network 𝜃 conditioned on
timestep embedding. Therefore, we can use the 𝜖 to supervise the

𝜖𝜃 (𝑥𝑡 | 𝑡) to efficiently train the network 𝜃 .

𝐿(𝜃 ) = 𝐸𝑡∼[1,𝑇 ],𝑥0∼𝑞 (𝑥 ),𝜖∼N(0,I)
[
∥𝜖 − 𝜖𝜃 (𝑥𝑡 | 𝑡)∥2] (6)

Given the model 𝜃 , following eq. 3, we can acquire data from
noise. Directly adapting the above method can fulfill the goal of
unconditional video generation. Further modifications to the ar-
chitecture can adapt the network to video prediction and video
interpolation tasks.

To adapt the diffusion model to the video prediction and video
interpolation tasks, a straightforward idea is to condition the denois-
ing process on the given past frames and future frames. To further
unify these tasks in a single framework, binary masks𝑚𝑝 ,𝑚𝑓 are
applied to the past frames and future frames with a probability
𝑝𝑚𝑎𝑠𝑘 = 0.5:

𝐿𝑢𝑛𝑖 𝑓 𝑦 (𝜃 ) = 𝐸𝑡∼[1,𝑇 ],[p,𝑥0,f ]∼𝑞 (𝑥 ),𝜖∼N(0,I)

[∥𝜖 − 𝜖𝜃 (𝑥𝑡 | 𝑡,𝑚𝑝p,𝑚𝑓 f)∥2]
(7)

The binary mask design allows the network to denoise without
any condition frames, which means the network trained on 𝐿𝑢𝑛𝑖 𝑓 𝑦
can do three tasks: video generation, video prediction, and video
interpolation.

In the reverse process of the diffusion model, a network 𝜃 is
needed to predict the Gaussian noise added in each forward step.
Only a huge network is capable of such an incredibly difficult task,
as each of the added noises should be small enough to make the
posterior distribution approximately a diagonal Gaussian distribu-
tion (see section 3.1). However, the training cost of such a huge
network is extremely expensive. To address this issue, we focus
on reducing the diffusion model’s training cost by optimizing the
design of convolution and self-attention in the denoising network.

3.2 Bottleneck Residual Pathway
As can be observed in Table 1, the most frequent operation in the
network is convolution. Therefore, We first consider reducing the
computational cost of the convolution in the network. Observed
that the huge computation costs mainly owing to the large input
channel and output channel of the convolution kernels, we propose
to downsample the channel of the feature maps that flow through
the convolution.

Inspired by the inception module of the GoogleNet [28], we
design a Bottleneck Residual Pathway that first uses a bottleneck
pointwise convolution to downsample the channels of the feature
maps, then sends the downsampled feature to two convolution
pathways and concatenates their output. We also consider that
the channel-wise downsampling may cause the loss of temporal
information. To remedy this, we enhance downsampled features
with the embedding of timestep and past frames. We also conduct
this enhancement to the features before the bottleneck convolution,
to encourage the network further aware of temporal information.

Specifically, given the input feature X ∈ 𝑅𝐵×𝐶×𝐻×𝑊 , where
𝐵,𝐶, 𝐻,𝑊 denotes the batch size, channels, and height and width
of the feature maps respectively, we first normalize and enhance it
with the embedding of the timestep and past frames:

Y = 𝐺𝑁 (X) · (1 + e1) + e2,

e = 𝑒𝑥𝑡 (𝐺𝑒𝑚𝑏 (p, 𝑡)𝑊𝑙 + 𝑏𝑙 ),
(8)
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Figure 1: The framework of the Efficiency-optimized Video Diffusion Models. Given noisy current frames, the network predicts
the noise added to them and generates denoised frames, receiving past and future frames as conditional information.

where e ∈ 𝑅𝐵×𝐸×1×1 is the concatenation of e1, e2 ∈ 𝑅𝐵×𝐸/2×1×1

and 𝐸 denotes the hidden dimension of embedding.𝐺𝑁 (.) denotes
GroupNorm, 𝐺𝑒𝑚𝑏 refers to the embedding network for the past
frames p and timestep 𝑡 .𝑊𝑙 ∈ 𝑅𝐸×𝐶 and 𝑏𝑙 ∈ 𝑅𝐶 are the parameters
of a linear layer, 𝑒𝑥𝑡 (.) extends the output of the linear layer to 4
dimensions. Note that the frame dimension of the video is integrated
into the channel dimension to reduce the computational cost.

Then we pass Y ∈ 𝑅𝐵×𝐶×𝐻×𝑊 to the bottleneck pointwise con-
volution, downsampling the channels of the feature maps, and
enhance it with the embedding of the past frames again:

Yb = 𝐺𝑁 (𝑅𝑒𝐿𝑈 (𝑌 ) ∗ K1) · (1 + e1) + e2, (9)

where K1 ∈ 𝑅1×1×𝐶×𝐶𝑜
𝛿 is the kernel of the pointwise convolution,

𝐶𝑜 is the ouput channel of Bottleneck Residual Pathway.
Finally, we send the downsampled features Yb ∈ 𝑅𝐵×

𝐶𝑜
𝛿

×𝐻×𝑊

to two convolution pathways and concatenate their output. One
pathway is a 3x3 convolution, the other is a pointwise convolution:

Yout = [Yb ∗ K2, Yb ∗ K3], (10)

where [·, ·] denotes the concatenation operation,K2 ∈ 𝑅1×1×𝐶𝑜
𝛿

×𝐶𝑜
2𝛿

and K3 ∈ 𝑅3×3×𝐶𝑜
𝛿

×𝐶𝑜
2𝛿 are the kernels of the 3x3 convolution

and pointwise convolution respectively. Our Bottleneck Residual
Pathway repeats the above procedure and aggregates the output
with a skip connection to avoid degradation.

3.3 Mixed Self-attention Mechanism
Self-attention layers in the network are also highly time-consuming.
Therefore, we consider reducing the computation cost of self-attention
in the network. Given a feature map X ∈ 𝑅𝐵×𝐶×𝐻×𝑊 , we first re-
shape it into a 3-dimension feature and use 3 linear layers 𝑇 to cal-
culate the query, key, and value metrics 𝑄,𝐾,𝑉 ∈ 𝑅𝐵′×𝐿×𝑑 , (𝐵′ =

𝐵ℎ, 𝐿 = 𝐻𝑊 ,𝑑 = 𝐶/ℎ𝑛):

𝑄 = 𝑇𝑊1 + 𝑏1, 𝐾 = 𝑇𝑊2 + 𝑏,𝑉 = 𝑇𝑊3 + 𝑏3 (11)

where ℎ𝑛 denotes the number of heads in layer 𝑛(1 ≤ 𝑛 ≤ 4),
𝑊1,𝑊2,𝑊3 ∈ 𝑅𝑑×𝑑 , 𝑏1, 𝑏2, 𝑏3 ∈ 𝑅𝑑 are parameters of these linear
layers. The plain self-attention algorithm then calculates the atten-
tion metrics and applies it to the 𝑉 :

𝑇𝑜𝑢𝑡 = (𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴)𝑉 )𝑊4 + 𝑏4, 𝐴 = 𝑄𝐾⊤/
√
𝑑 (12)

where𝐴 ∈ 𝑅𝐵′×𝐿×𝐿 is the attention metric and𝑊4 ∈ 𝑅𝑑×𝑑 , 𝑏4 ∈ 𝑅𝑑
are the parameters of the last linear layer of self-attention. The time
complexity of eq. 12 is 𝑂 (𝐿2𝑑).

The FAVOR+ algorithm [3] approximates 𝑄 ′, 𝐾 ′ ∈ 𝑅𝐵′×𝐿×𝑑 that
satisfies:

𝐴𝑉 = 𝑄 ′ (𝐾 ′⊤𝑉 ) (13)
This allows them to reduce the time complexity to 𝑂 (𝐿𝑑2).

However, just like most self-attention acceleration algorithms,
the FAVOR+ algorithm assumes that 𝐿 ≫ 𝑑 . This assumption holds
in most cases but fails in the denoising network of the diffusion
model. To minimize the time complexity of the self-attention in all
network layers, we devise a threshold gate that when the condi-
tion of the gate is satisfied, we use FAVOR+, otherwise the plain
algorithm:

𝐿 > 𝜆𝑑 ⇒ 𝐻𝑊

4𝑛
> 𝜆

𝐶0
ℎ𝑛
𝑀𝑛 (14)

where 𝐶0 is the channel of the first network layer, 𝑛 is the number
of layer, 𝜆 > 1 is the hyperparameter that defines how many times
should the 𝐿 bigger than 𝑑 . The eq.14 is based on the network
architecture that in Layer 𝑛, the width and height are reduced by
2𝑛 while the channels are multiplied by𝑀𝑛 . Our mixed attention
mechanism guarantees that in the self-attention layer that uses
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Table 1: Parameters and FLOPs comparison in each layer of MCVD[31] and our models when base channel 𝑐0 = 96. We only
analyze the convolution and the attention blocks, as they constitute the majority of parameters and FLOPs.

Layer
Convolution
#Params (M)

Convolution
#GFLOPs

Attention
#GFLOPs

MCVD EVDM EVDM-L MCVD EVDM EVDM-L MCVD EVDM EVDM-L
Layer1 2.59 1.66 1.36 334.33 59.78 16.77 0 0 0
Layer2 8.23 4.07 2.99 483.53 95.7 25.22 106.49 36.5 36.5
Layer3 16.86 6.99 4.72 274.08 53.9 13.93 23.63 19.12 19.12
Layer4 31.14 11.4 7.26 139.67 26.82 6.86 10.5 10.92 10.92
total 58.82 24.12 16.33 1231.61 236.2 66.6 140.62 66.53 66.53
reduction - × 2.43 × 3.60 - × 5.21 × 18.49 - × 2.11 × 2.11

FAVOR+, the time complexity is less than 𝑂 (𝐿2𝑑/𝜆), thus at least 𝜆
time faster than the plain algorithm.

3.4 Further Architecture Optimizations
As Table 1 shows, although the above method reduces the compu-
tation cost significantly, the computation cost of the convolution
remains high and takes a large part of the overall complexity. There-
fore, taking the architecture in the above section as a basic version
of our approach, in this section, we further optimize the BRP to re-
duce the computation cost and develop a lighter version (EVDM-L).

We first observe that the skip connection uses a pointwise con-
volution to map the large input feature maps into the output. The
input channel and the output channel of this pointwise convolution
are large, resulting in a big computation cost. Based on the obser-
vation, we propose a shortcut optimization method to reduce the
computation cost. We first consider conducting the convolution by
groups, which divides the channels of input feature maps into 𝑁𝑔
groups and use 𝑁𝑔 small convolution kernels to calculate the results
of each group. However, conducting convolution by groups also
prevents the channel groups from communicating, and weakens
the feature extraction. To remedy this, we adopt the channel shuffle
strategy [42] to encourage channel-wise communication.

In addition, we design a new channel split way to further strengthen
channel-wise communication and reduce the possible information
loss of the bottleneck design. Given the input feature maps with𝐶𝑖𝑛
channels, the output feature maps have𝐶𝑜𝑢𝑡 channels, we consider
two circumstances: 𝐶𝑖𝑛 < 𝐶𝑜𝑢𝑡 and 𝐶𝑖𝑛 ≥ 𝐶𝑜𝑢𝑡 . These two cases

Table 2: Comparison between theMCVD and our EVDMmod-
els. Amore specific comparison of themodel used in the KTH
dataset is given in Table 1.

Dataset Model 𝐶0 Params GFLOPs FVD
SM-MNIST MCVD 64 27.9M 631.91 23.9
SM-MNIST EVDM 64 12.5M 189.66 12.9
SM-MNIST EVDM-L 64 5.92M 60.64 19.2
KTH MCVD 96 62.8M 1376.87 323.0
KTH EVDM 96 28.1M 307.41 290.0
KTH EVDM-L 96 20.4M 133.99 298.0
BAIR MCVD 192 251.2M 5328.15 89.5
BAIR EVDM 192 112.4M 1219.60 59.0
BAIR EVDM-L 192 53.0M 526.48 64.4
UCF MCVD 288 739.4M 9946.38 1143.0
UCF EVDM 288 252.7M 1362.88 1103.6
UCF EVDM-L 288 182.7M 583.38 1118.4

4

𝐶𝑖𝑛 𝐶𝑜𝑢𝑡

split shuffle
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Figure 2: An illustration of our channel split strategy. For
{𝐶𝑥 ,𝐶𝑦} in the figure, 𝐶𝑥 denotes the channels in the 𝐶𝑖𝑛 <

𝐶𝑜𝑢𝑡 case, 𝐶𝑦 denotes the 𝐶𝑖𝑛 ≥ 𝐶𝑜𝑢𝑡 case.

mostly occur in the downsample layers and the upsample layers,
respectively. For the first case, we send the input feature maps di-
rectly into the bottleneck convolution. In the other path, the input
feature maps are concatenated with the output of the convolution
pathways, which has 𝐶𝑜𝑢𝑡−𝑐𝑖𝑛

2 channels. For the second case, we
split the channels of the input feature maps into two groups with
𝐶𝑜𝑢𝑡

2 ,𝐶𝑖𝑛 − 𝐶𝑜𝑢𝑡

2 channels respectively. The former is sent into the
bottleneck convolution, and the latter is concatenated with the
output of the convolution pathways that have 𝐶𝑜𝑢𝑡

2 channels. We
give an illustration of our channel split strategy in Figure 2.

With the channel split strategy, part of the input will be directly
integrated into the output feature maps. The channel shuffle opera-
tion also avoids the channel split choosing a fixed part of channels.
These designs not only reduce the computation cost by cutting
down the input channels and output channels of the convolution
but also allow the input features to strengthen the convolution
results and mitigate the information loss of the bottleneck convolu-
tion. We also increase the value of 𝛿 to downsample the channels
more radically in the bottleneck convolution for the faster version
of our approach.

4 EXPERIMENTS
4.1 Datasets
To evaluate the performance of our Efficiency-optimized Video Dif-
fusion Models, we conduct experiments on SM-MNIST, KTH, BAIR,
and UCF101 datasets. (1) SM-MNIST is a video dataset of moving
handwritten digits. It contains 60,000 black-and-white videos in
64x64 resolution. (2) KTH is a human action dataset of a single
person acting in a simple background. There are 600 greyscale
videos with 64x64 resolution in this dataset. (3) BAIR is a dataset
of 64x64 videos of a robot pushing objects on the top of a table.
It contains 44,000 RGB videos in total. (4) UCF101 is a dataset of
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Table 3: Video prediction results on BAIR (64 × 64) trained on 𝑘 frames to predict 15 frames based on one frame.

Method k Params GFLOPs FVD ↓ PSNR ↑ SSIM ↑
MCVD-s [NeurIPS 2022] [31] 5 328.6M 8880.08 103.8 18.8 0.826
CCVS [NeurIPS 2021] [15] 15 - - 99.0 - -
MCVD-c [NeurIPS 2022] [31] 5 251.2M 5326.79 98.8 18.8 0.829
Video Transformer [ICLR 2020] [36] 15 373.0M - 96.0 - -
MCVD concat pf-mask [NeurIPS 2022] [31] 5 251.2M 5328.48 89.5 16.9 0.780
EVDM-L (Ours) 5 53.0M 526.48 64.4 18.7 0.822
EVDM (Ours) 5 112.4M 1219.6 59.0 18.8 0.830

realistic action videos collected from YouTube. It has 101 action
categories of 13,320 RGB videos. We follow [31] to preprocess the
data and split the train-test set.

4.2 Evaluation Metrics
We use FVD, SSIM, and PSNR to quantify the performance of our
model. We also compute the parameters and FLOPs for speed and
model size comparison. FVD calculates the distance of the I3D fea-
ture between the synthesis videos and real videos. A lower FVD
means the generated videos of the network are closer to the real
videos. SSIM measures the structure similarity of two images, con-
sidering the similarity of the luminance, contrast, and structure. We
follow the previous works to calculate the maximum SSIM across
the generated frames. A higher SSIM also indicates that the gener-
ated videos are closer to the real videos. PSNR measures the ratio
between the power of a signal and the power of noise that affects
the fidelity of its representation. A higher PSNR refers to the higher
quality of the video, which cannot easily be corrupted by the noise.
FLOPs refer to floating point operations, a lower FLOPs mean the
network has less computation cost and can run faster. Our FLOPs
results are calculated under the batch size of 64.

4.3 Implement Details
Following [31], we use different sizes of models in the experiments
to leverage the computation resources more efficiently. All of our
models use self-attention in Layer 2, Layer 3, and Layer 4. The𝑀𝑛

of all our models are set to [1, 2, 3, 4], 1 ≤ 𝑛 ≤ 4. ℎ𝑛 is calculated
according to 𝑑 = 𝐶/ℎ𝑛,𝐶 = 𝐶0𝑀𝑛 . 𝜆 is set to 2 in our network. 𝛿
is set to 4 in the basic version of our approach, and 8 in the faster
version of our approach (EVDM-L). Our models are trained on ≤ 4
Nvidia A40 GPUs in 1-6 days.

4.4 Comparison with the State-of-the-art
For comparison experiments, we evaluate the performance of our
approach on 3 different downstream tasks: video prediction, video
generation, and video interpolation. We show the results of video
prediction in Tables 3 - 4 on BAIR and KTH. We present the uncon-
ditional video generation results on UCF and BAIR in Tables 5 & 6.
We present the video interpolation results of SM-MNIST, KTH, and
BAIR in Table 7.

First, we evaluate our performance in video prediction tasks on
KTH, and BAIR datasets. Table 3 shows the BAIR dataset results.
Our approach uses the least parameters and achieves the best re-
sult in all evaluation metrics. Whatś especially exciting is that our
EVDM-L model significantly outperforms the previous SOTA with
only 1/10 of its computation cost. Regarding our basic approach
first (EVDM), we achieve a 2.23x reduction in model size and a 4.37x

Table 4: Video prediction results on KTH (64 x 64), predicting
30 frames based on 10 frames.

Method FVD ↓ PSNR ↑ SSIM ↑
SAVP [arxiv 2018] [4] 374 26.5 0.756
MCVD [NeurIPS 2022] [2] 323 27.5 0.835
SLAMP [ICCV 2021] [1] 228 29.4 0.865
SRVP [ICML 2020] [7] 222 29.7 0.870
EVDM-L 100 steps (Ours) 298 26.8 0.816
EVDM 100 steps (Ours) 290 27.2 0.833
EVDM 1000 steps (Ours) 206 28.1 0.828

reduction in computation cost in terms of efficiency. In terms of
fidelity, the significantly lower FVD shows that our approach can
generate videos with higher quality and is also closer to real videos.
These promising results are mainly credited to our careful optimiza-
tion of the convolution and self-attention layers. Our bottleneck
residual pathway conducts a channel-wise downsample, enhancing
the downsampled features with temporal information. Our mixed
self-attention adaptively chooses the self-attention algorithm with
a lower computation cost. The faster version of our approach also
significantly outperforms the previous SOTA in terms of efficiency
and fidelity. This credits to our further optimization of BRP in our
basic approach. The shortcut optimization employs group convolu-
tion to reduce the computation cost of the shortcut connection. The
channel split strategy reduces the input channels and output chan-
nels of the convolution pathways, while also boosting channel-wise
communication. These careful designs enable the faster version of
our approach to be more efficient than the basic version.

Our faster approach (EVDM-L) achieves a 10.4× speed up com-
pared with MCVD while performing comparably in FVD and SSIM
metrics. These results indicate that EVDM-L is much more efficient
than the MCVD.

Table 4 shows the video prediction results of the KTH dataset.
The MCVD in the table is the MCVD concat model. We can observe
from Table 2 and Table 4 that both EVDM and EVDM-L outperform
the MCVD by a large margin while achieving 4.47× and 10.3×
speed-up. Our EVDM and EVDM-L reduce 11% and 8% the FVD
score of the MCVD using 100 DDPM sampling steps.

Table 5: Unconditional generation of UCF101, generating 16
video frames.

Method FVD ↓
MoCoGAN-MDP [ICCV 2019] [41] 1277.0
MCVD concat p-mask [NeurIPS 2022] [31] 1228.3
TGANv2 [IJCV 2020] [21] 1209.0
MCVD (spatin p-mask) [NeurIPS 2022] [31] 1143.0
EVDM-L (Ours) 1118.4
EVDM (Ours) 1103.6
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Figure 3: The FVD score of MCVD, EVDM, and EVDM-L dur-
ing training.

Second, we evaluate our performance in the video generation
task on UCF101 and BAIR datasets. Table 6 shows the video genera-
tion results of the BAIR dataset. The basic version of our approach
outperforms the previous SOTA MCVD while achieving a 4x speed-
up. EVDM-L achieves comparable results compared with MCVD
with 21% its model size and 9.9% its computation cost. Table 5
shows the video generation results of the UCF dataset. Combine
the FLOPs data of Table 2 and the fidelity results of Table 5, we can
observe that our basic version and faster version achieve compara-
ble results while reducing the computation cost 7.3 times and 17
times compared with MCVD.

Third, we evaluate our performance in video interpolation tasks
on SM-MNIST, KTH, and BAIR datasets. Table 7 reports the re-
sults. In all three datasets, our basic approach (EVDM) significantly
outperforms the previous SOTA MCVD with much fewer param-
eters and calculations. Our EVDM approach improves the PSNR
and SSIM results in SM-MNIST, KTH datasets, and BAIR datasets
respectively, which indicates that our EVDM can generate videos
with better quality and less noise.

To provide additional insights into why our approach main-
tains generative fidelity, we have conducted a new experiment that
records the FVD scores of our approach and MCVD during training
on the BAIR and SM-MNIST datasets. The results of this experiment
are presented in Figure 3.

Upon observation, it is evident that our approach exhibits similar
or even faster convergence rates compared to MCVD. This obser-
vation indicates that our acceleration approach does not compro-
mise the network’s capability, thereby validating that our approach
maintains generative fidelity by reducing the redundancy in the
network.

Table 6: Unconditional generation of BAIR, generating 16
video frames.

Method FVD ↓
MCVD spatin p-mask [NeurIPS 2022] [31] 267.8
MCVD concat p-mask [NeurIPS 2022] [31] 228.5
EVDM-L (Ours) 231.7
EVDM (Ours) 219.9

4.5 Ablation Studies
To further verify the effectiveness of each component of our EVDM
approach, we conduct ablation studies on the KTH dataset. Before
analyzing the results, let’s take a brief review of our approach. Our
EVDM approach uses bottleneck residual pathway (BRP) and mixed
self-attention mechanism (MSM) to reduce the computation cost
of convolution and self-attention respectively. As the temporal en-
hancement in the bottleneck residual pathway plays an important
role in our architecture, we also study it in the ablation experiments.
To further reduce the computation cost, we design a shortcut op-
timization and a channel split strategy. And finally, we increase
the value of 𝛿 to further accelerate. In the ablation experiment, we
study the effectiveness of these components and present the results
in Table 8.

4.5.1 Effectiveness of bottleneck residual pathway. Table 8 shows
that the main acceleration is contributed by BRP. The results of
the first 2 lines show that the BRP cuts down 72% of calculation
operations of the origin network, which indicates the channel-wise
downsample indeed greatly reduces the computation cost of the
convolution. Except for speed, fidelity is also a critical issue. The
results of the first 2 lines indicate that pure downsampling to the fea-
ture indeed causes information loss and damages the performance
of the model. The results of the third line show that temporal en-
hancement helps remedy this issue by adding temporal information
to the feature maps, helping FVD goes back to 359. In addition, by
comparing the last 2 lines, we can see that the (BRP-eh) notably
improves the FVD and PSNR metrics while keeping the computa-
tion cost unchanged. This indicates that temporal enhancement
can help the models capture the temporal feature of the videos and
generate videos that have higher fidelity and a closer distance to
the real videos.

4.5.2 Effectiveness of mixed self-attentionmechanism. Table 8 shows
that the MSM also contributes to the reduction of the computation
cost. In the fourth line, we add the mixed self-attention mechanism
to the architecture of the second line. We can see that the GFLOPs
of the fourth line are 21% fewer that the second line by adding the
MSM. This shows the computation cost of self-attention is reduced
by performing our mixed self-attention mechanism. Moreover, we
can also observe that FVD and PSNR results of the fourth line are
much lower than the second line, which indicates that the mixed
self-attention mechanism also helps fix the information loss prob-
lem. This is because the mixed self-attention can encourage the
model to focus on the crucial information and prevent them from
getting lost in the channel-wise downsampling of BRP.

4.5.3 Effectiveness of shortcut optimization. In the second part of
the ablation experiment, we take the EVDM as the baseline and
study the effectiveness of the modules in the faster version of our
approach. In the first line of this part, we add shortcut optimization
(SO) to the basic version of our approach. In the third and the fourth
line, we add the channel split strategy (Split) and both the SO and
Split. The results of the first two lines show that the computation
cost of the EVDM is 15.5% lower by adding the shortcut optimiza-
tion to the architecture. In terms of fidelity, the FVD and PSNR
results of the EVDM+SO decrease slightly, which implies that the
group convolution of the shortcut optimization indeed weakens the
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Table 7: Video interpolation results on SM-MNIST, KTH, and BAIR datasets. Given p past frames and f future frames, the model
interpolates k frames. We report the average of the best metrics out of 10 trajectories per test sample in SM-MNIST and KTH
datasets, following MCVD. The rest results in the table are the best metrics out of 100 trajectories.

Method SM-MNIST KTH BAIR
p+f k PSNR ↑ SSIM ↑ p+f k PSNR ↑ SSIM ↑ p+f k PSNR ↑ SSIM ↑

FSTN [ICCV 2017] [17] 18 7 14.730 0.765 18 7 29.431 0.899 18 7 19.908 0.850
superSloMo [CVPR 2018] [12] 18 7 13.387 0.749 18 7 28.756 0.893 - - - -
SDVI full [WACV 2020] [39] 18 7 16.025 0.842 18 7 29.190 0.901 18 7 21.432 0.880
MCVD [NeurIPS 2022] [31] 10 5 27.693 0.941 10 5 35.611 0.963 4 5 25.162 0.932
EVDM-L (Ours) 10 5 26.536 0.933 10 5 36.642 0.962 4 5 24.668 0.926
EVDM (Ours) 10 5 28.131 0.948 10 5 36.616 0.966 4 5 25.567 0.936

Table 8: Ablation studies on the KTH dataset. The BRP-eh refers to the temporal enhancement of the bottleneck residual
pathway. SO refers to the shortcut optimization in section 3.4. Split indicates the channel split strategy.

Architecture BRP BRP-eh MSM SO Split 𝛿 Params GFLOPs FVD ↓ PSNR ↑
baseline × × × × × - 62.8M 1376.87 317 26.6
baseline+BRP

√ × × × × 4 25.4M 381.64 376 26.4
baseline+BRP+BRP-eh

√ √ × × × 4 28.1M 381.49 359 26.6
baseline+BRP+MSM

√ × √ × × 4 25.4M 307.53 349 26.6
EVDM

√ √ √ × × 4 28.1M 307.41 290 27.2
EVDM+SO

√ √ √ √ × 4 32.5M 259.86 307 27.0
EVDM+Split

√ √ √ × √
4 25.0M 226.12 300 26.9

EVDM+SO+Split
√ √ √ √ √

4 22.2M 147.32 300 27.2
EVDM-L

√ √ √ √ √
8 20.4M 133.99 298 26.8

communication between channel groups. The results of the fourth
line show that our channel split strategy remedies this issue by
connecting the channels of the input and output feature maps to
boost channel-wise communication. We can also see from the third
and fourth lines that the SO helps the EVDM+SO+Split outperforms
the EVDM+Split, which verifies the effectiveness of the shortcut
optimization.

4.5.4 Effectiveness of channel split strategy. Table 8 shows that the
major computation reduction of the second version of our approach
is contributed by the channel split strategy. Comparing the results
of the first line and the third line, we can observe that the channel
split strategy reduces 27% of the computation cost of the EVDM. The
channel split strategy also helps the model maintain its accuracy
while becoming faster and smaller. By comparing the results of the
fourth line and the second line, we can see that the results of FVD
and PSNR are improved, which verifies our claim that the channel
split strategy can boost channel-wise communication and remedy
the issues caused by group convolution. Moreover, the results of
the last two lines indicate that although we increase the value of
𝛿 to downsample the channels more radically, the results of the
FVD and PSNR are nearly unchanged. This verifies our claim that
channel-wise splitting can weaken information loss.

The results of the ablation study show that all of our components
contribute to the reduction of computation cost or performance
improvement. Combining BRP and MSM can achieve 4x speed-up
while achieving the best fidelity. With our further optimization
of the architecture, our model can achieve 10x speed-up while
maintaining fidelity.

5 CONCLUSION
In this paper, we present the Efficiency-optimized Video Diffusion
Model, which reduces the computation cost of the video diffusion
model by optimizing the design of convolution and self-attention

Table 9: Comparison of the training and inference time be-
tween the MCVD and our EVDMmodels.

Model GPU GPU hours Latency (ms)
MCVD Tesla A40 75.2 16.5
EVDM Tesla A40 38.7 10.9
EVDM-L Tesla A40 25.4 6.1
MCVD Tesla A40 181.2 26.4
EVDM Tesla A40 115.7 19.3
EVDM-L Tesla A40 73.1 7.5

blocks. Specifically, BRP performs depth-wise splitting to the convo-
lution kernels and enhances the feature maps with temporal infor-
mation, ensuring both efficiency and fidelity. A three-path channel
split strategy is proposed to reduce the channel redundancy of con-
volution via incorporating pointwise convolution pathways and
direct link pathways to handle part of the input channels. MSM
adapts the fast self-attention algorithm to the variation of the token
length and hidden dimension in the network, which minimizes the
time complexity of self-attention. Our model achieves a 10 × speed
up while maintaining the generative fidelity.

Although notably optimizing the efficiency of the video diffusion
model, our work still has some limitations. Limited by the training
data, our model currently can only generate a limited range of
actions and scenes. Also, the videos generated by our model are still
short and low-resolution compared with real movies. To overcome
these limitations, our future work will focus on leveraging the
superior efficiency of our proposed backbone to conduct large-scale
pretraining. This endeavor aims to enhance our model’s capability
to generate open-domain, high-fidelity videos.
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